FPROPS/Thermal conductivity
Calculation of thermal conductivity in FPROPS is in development. This development is driven by an application requiring transport properties of carbon dioxide, so the first correlations being implemented will be for that. Although textbooks such as Incropera and DeWitt, Holman and Cengel use <math>k</math> for thermal conductivity, most publications on thermophysical properties use the convention of <math>\lambda</math>, and that convention will be used on this page.
Correlations typically specify conductivity in terms of ideal (zero-density limit) <math>\lambda_0</math>, residual <\math>\lambda_r</math> and critical region enhancement function <math>\lambda_c</math>, as follows:
- <math>\lambda \left(\rho,T \right) = \lambda_0 \left(T \right) + \lambda_r \left(\rho, T\right) + \lambda_c \left(\rho, T\right)</math>
Ideal component
The ideal (zero-density limit) component has been expressed in several places[1][2][3]
- <math>\lambda_0\left(T\right) = \frac{0.177568 \sqrt{T} \left(c_p^0/R\right)}{\sigma^2 \sqrt{M} \: \mathcal{C}_\lambda^\ast\left(T^\ast\right)}</math>
References
- ↑ V Vesovic, W A Wakeham, G A Olchowy, J V Sengers, J T R Watson and J Millat, 1990. The Transport Properties of Carbon Dioxide, J Phys Chem Ref Data 19, 763. doi:10.1063/1.555875.
- ↑ E W Lemmon and R T Jacobsen, 2004. Viscosity and Thermal Conductivity Equations for Nitrogen, Oxygen, Argon, and Air doi:10.1023/B:IJOT.0000022327.04529.f3
- ↑ V Vesovic, 1994. "On Correlating the Transport Properties of Supercritical Fluids", in Supercritical Fluids: Fundamentals for Application, Springer, pp 273-283. doi:10.1007/978-94-015-8295-7_10.