Predictive Soave-Redlich-Kwong (PSRK): Difference between revisions
No edit summary |
mNo edit summary |
||
| Line 1: | Line 1: | ||
Generic cubic equation of state | === Generic cubic equation of state === | ||
<math> P = { { R \; T } \over { V - b } } - { { a(T) } \over { ( V + \epsilon * b ) * ( V + \sigma * b ) } } </math> | <math> P = { { R \; T } \over { V - b } } - { { a(T) } \over { ( V + \epsilon * b ) * ( V + \sigma * b ) } } </math> | ||
| Line 12: | Line 12: | ||
<math> P = { { R \; T } \over { V - b } } - { { a(T) } \over { V * ( V + b ) } } </math> | <math> P = { { R \; T } \over { V - b } } - { { a(T) } \over { V * ( V + b ) } } </math> | ||
PSRK mixing rule for calculating a(T) and b | === PSRK mixing rule for calculating a(T) and b === | ||
Cohesion pressure (attractive parameter): | Cohesion pressure (attractive parameter): | ||
<math> a(T) = b*R*T ( \sum x_i { {a_{ii}(T)} \over {b_i*R*T} } + { { { {g_0^E} \over {R*T} } + \sum x_i ln( b / b_i ) } \over { ln( u / (u + 1) )} } )</math> | <math> a(T) = b*R*T ( \sum x_i { {a_{ii}(T)} \over {b_i*R*T} } + { { { {g_0^E} \over {R*T} } + \sum x_i ln( b / b_i ) } \over { ln( u / (u + 1) )} } )</math>; <math> u = 1.1 </math> | ||
with <math> a_{ii}(T) = \Psi * { { \alpha_i (T_{r,i}) * R^2 T_{C,i}^2 } \over { P_{C,i} } } </math>; <math> \Psi = 0.42748 </math> | |||
Excluded volume or "co-volume" (repulsive parameter): | |||
modified UNIFAC | <math> b = \sum x_i*b_i </math> | ||
with <math> b_i = \Omega * { { R*T_{C,i} } \over { P_{C,i} } } </math>; <math> \Omega = 0.08664 </math> | |||
=== Mathias-Copeman equation === | |||
=== Gibbs-Excess energy === | |||
=== modified UNIFAC === | |||
Procedure for calculating vapour-liquid equilibria (VLE): | Procedure for calculating vapour-liquid equilibria (VLE): | ||
Revision as of 15:16, 23 December 2015
Generic cubic equation of state
<math> P = { { R \; T } \over { V - b } } - { { a(T) } \over { ( V + \epsilon * b ) * ( V + \sigma * b ) } } </math>
Parameters for Soave-Redlich-Kwong equation are:
<math> \epsilon = 0</math> and <math> \sigma = 1</math>
Thus:
<math> P = { { R \; T } \over { V - b } } - { { a(T) } \over { V * ( V + b ) } } </math>
PSRK mixing rule for calculating a(T) and b
Cohesion pressure (attractive parameter):
<math> a(T) = b*R*T ( \sum x_i { {a_{ii}(T)} \over {b_i*R*T} } + { { { {g_0^E} \over {R*T} } + \sum x_i ln( b / b_i ) } \over { ln( u / (u + 1) )} } )</math>; <math> u = 1.1 </math>
with <math> a_{ii}(T) = \Psi * { { \alpha_i (T_{r,i}) * R^2 T_{C,i}^2 } \over { P_{C,i} } } </math>; <math> \Psi = 0.42748 </math>
Excluded volume or "co-volume" (repulsive parameter):
<math> b = \sum x_i*b_i </math>
with <math> b_i = \Omega * { { R*T_{C,i} } \over { P_{C,i} } } </math>; <math> \Omega = 0.08664 </math>
Mathias-Copeman equation
Gibbs-Excess energy
modified UNIFAC
Procedure for calculating vapour-liquid equilibria (VLE):