Predictive Soave-Redlich-Kwong (PSRK): Difference between revisions
Jump to navigation
Jump to search
No edit summary |
mNo edit summary |
||
| Line 7: | Line 7: | ||
<math> \epsilon = 0</math> and <math> \sigma = 1</math> | <math> \epsilon = 0</math> and <math> \sigma = 1</math> | ||
Thus: | |||
<math> P = { { R \; T } \over { V - b } } - { { a(T) } \over { V * ( V + b ) } } </math> | |||
PSRK mixing rule for calculating a(T) and b: | |||
Mathias-Copeman equation: | |||
Gibbs-Excess energy: | |||
modified UNIFAC: | |||
Procedure for calculating vapour-liquid equilibria (VLE): | |||
Revision as of 11:46, 23 December 2015
Generic cubic equation of state (explicitly arranged for pressure):
<math> P = { { R \; T } \over { V - b } } - { { a(T) } \over { ( V + \epsilon * b ) * ( V + \sigma * b ) } } </math>
Parameters for Soave-Redlich-Kwong equation are:
<math> \epsilon = 0</math> and <math> \sigma = 1</math>
Thus:
<math> P = { { R \; T } \over { V - b } } - { { a(T) } \over { V * ( V + b ) } } </math>
PSRK mixing rule for calculating a(T) and b:
Mathias-Copeman equation:
Gibbs-Excess energy:
modified UNIFAC:
Procedure for calculating vapour-liquid equilibria (VLE):