PengRobinson EOS in FPROPS: Difference between revisions
No edit summary |
|||
| Line 5: | Line 5: | ||
Comments and suggestions are welcome | Comments and suggestions are welcome | ||
==Overview== | ==Overview== | ||
The Peng-Robinson EOS is a cubic equation of state in that it contains volume terms to the third power. It is usually expressed to give | The Peng-Robinson EOS is a cubic equation of state in that it contains volume terms to the third power. It is usually expressed to give pressure in terms of temperature and molar volume <math>{bar v}</math>: | ||
:<math> | :<math> | ||
p =\frac{RT}{{bar v}-b}-\frac{a(T)}{{bar v}({bar v}+b)+b({bar v}-b)} | |||
</math> | </math> | ||
where | where | ||
:<math>\begin{align} | :<math>\begin{align} | ||
a(T)&=0.45724 \frac{R^2{T_c}^2}{P_c} \ | a(T) &= 0.45724 \frac{R^2{T_c}^2}{P_c} \alpha \left(T \right) \\ | ||
\kappa&=0.37464+1.54226\omega - 0.26992\omega^2 | \alpha &= \left( 1+\kappa \left( 1-\sqrt{\frac{T}{T_c}} \right) \right)^2 \\ | ||
\kappa &= 0.37464+1.54226\omega - 0.26992\omega^2 | |||
\end{align} | \end{align} | ||
</math> | </math> | ||
| Line 20: | Line 22: | ||
It is sometimes more convenient to express the equation as a cubic polynomial in terms of compressibility factor <math>Z=\frac{PV_m}{RT}</math> | It is sometimes more convenient to express the equation as a cubic polynomial in terms of compressibility factor <math>Z=\frac{PV_m}{RT}</math> | ||
:<math> | :<math> | ||
Z^3+(-1-B)Z^2+(A-3B^2-2B)Z-AB+B^2+B^3=0 | Z^3+(-1-B)Z^2+(A-3B^2-2B)Z-AB+B^2+B^3=0 | ||
</math> | </math> | ||
in which | in which | ||
:<math> | :<math> | ||
\begin{align} | \begin{align} | ||
A=\frac{ | A &= \frac{a \left(T \right) p}{(RT)^2} \\ | ||
B=\frac{ | B &= \frac{b}{RT} | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
| Line 44: | Line 44: | ||
Clearly to evaluate these functions we need to be able to evaluate <math>\frac{da}{dT}</math>: (CHECK THIS) | Clearly to evaluate these functions we need to be able to evaluate <math>\frac{da}{dT}</math>: (CHECK THIS) | ||
:<math> | :<math> | ||
\frac{da}{dT}=- 0.45724 \frac{T_c R^{2}}{p_c} \kappa \left(\sqrt{\frac{T_c}{T}} - 1\right) | |||
\frac{da}{dT}=- 0.45724 \frac{T_c R^{2}}{ | |||
</math> | </math> | ||
Sandler seems to have: | Sandler seems to have: | ||
:<math> | :<math> | ||
\frac{da}{dT}=- 0.45724 \frac{T_c R^{2}}{p_c} \kappa \left(\sqrt{\frac{\alpha}{T T_c}} \right) | |||
\frac{da}{dT}=- 0.45724 \frac{T_c R^{2}}{ | |||
</math> | </math> | ||
Revision as of 07:35, 18 July 2011
Work on this is went on as a part of GSoC 2010 (Project Ankit) and continues as part of GSoC 2011 (Richard Towers). See also FPROPS.
Comments and suggestions are welcome
Overview
The Peng-Robinson EOS is a cubic equation of state in that it contains volume terms to the third power. It is usually expressed to give pressure in terms of temperature and molar volume <math>{bar v}</math>:
- <math>
p =\frac{RT}{{bar v}-b}-\frac{a(T)}{{bar v}({bar v}+b)+b({bar v}-b)} </math> where
- <math>\begin{align}
a(T) &= 0.45724 \frac{R^2{T_c}^2}{P_c} \alpha \left(T \right) \\
\alpha &= \left( 1+\kappa \left( 1-\sqrt{\frac{T}{T_c}} \right) \right)^2 \\
\kappa &= 0.37464+1.54226\omega - 0.26992\omega^2 \end{align} </math>
It is sometimes more convenient to express the equation as a cubic polynomial in terms of compressibility factor <math>Z=\frac{PV_m}{RT}</math>
- <math>
Z^3+(-1-B)Z^2+(A-3B^2-2B)Z-AB+B^2+B^3=0 </math> in which
- <math>
\begin{align} A &= \frac{a \left(T \right) p}{(RT)^2} \\ B &= \frac{b}{RT} \end{align} </math>
Departure Functions
Departure functions represent the departure of the real properties from the ideal properties - i.e the properties of a fluid at zero pressure or infinite molar volume. The departure functions of the Peng-Robinson equation of state are as follows:
- <math>
\begin{align} H_{m}-H_{m}^{\text{ideal}}&=RT(Z-1)+\frac{T\left(\frac{da}{dT}\right)-a}{2\sqrt{2}b}\ln\left[\frac{Z+(1+\sqrt{2})B}{Z+(1-\sqrt{2})B}\right] \\
S_{m}-S_{m}^{\text{ideal}}&=R\ln (Z-B)+\frac{\frac{da}{dT}}{2\sqrt{2}b}\ln\left[\frac{Z+(1+\sqrt{2})B}{Z+(1-\sqrt{2})B}\right] \end{align} </math> Clearly to evaluate these functions we need to be able to evaluate <math>\frac{da}{dT}</math>: (CHECK THIS)
- <math>
\frac{da}{dT}=- 0.45724 \frac{T_c R^{2}}{p_c} \kappa \left(\sqrt{\frac{T_c}{T}} - 1\right) </math> Sandler seems to have:
- <math>
\frac{da}{dT}=- 0.45724 \frac{T_c R^{2}}{p_c} \kappa \left(\sqrt{\frac{\alpha}{T T_c}} \right) </math>