PengRobinson EOS in FPROPS: Difference between revisions
Removed Ankit's code etc. since the focus of this has shifted. |
|||
| Line 5: | Line 5: | ||
Comments and suggestions are welcome | Comments and suggestions are welcome | ||
==Overview== | ==Overview== | ||
The Peng-Robinson EOS is a cubic equation of state in that it contains volume terms to the third power | The Peng-Robinson EOS is a cubic equation of state in that it contains volume terms to the third power. It is usually expressed to give Pressure in terms of Temperature and Molar Volume: | ||
:<math> | :<math> | ||
\begin{align} | \begin{align} | ||
P=\frac{RT}{ | P=\frac{RT}{V_m-b}-\frac{a(T)}{V_m(V_m+b)+b(V_m-b)} | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
It is sometimes more convenient to express the equation in terms of compressibility factor: | |||
:<math> | :<math> | ||
\begin{align} | \begin{align} | ||
Z^3- | Z^3+(-1-B)Z^2+(A-3B^2-2B)Z-AB+B^2+B^3=0 | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
The various fluid-dependant constants and variables in the above are defined as: | |||
:<math> | :<math> | ||
\begin{align} | \begin{align} | ||
a(T)=0.45724\times \frac{R^2{T_c}^2}{P_c} \left(1+\kappa \left(1-\sqrt{\frac{T}{T_c}} \right) \right)^2 | |||
\end{align} | |||
</math> | |||
::<math> | |||
\begin{align} | |||
\kappa=0.37464+1.54226\omega - 0.26992\omega^2 | |||
\end{align} | \end{align} | ||
</math> | </math> | ||
:<math> | :<math> | ||
\begin{align} | \begin{align} | ||
A=\frac{aP}{(RT)^2} | |||
\end{align} | \end{align} | ||
</math> | </math> | ||
:<math> | :<math> | ||
\begin{align} | \begin{align} | ||
B=\frac{bP}{RT} | |||
\end{align} | \end{align} | ||
</math> | </math> | ||
By definition: | |||
:<math> | :<math> | ||
\begin{align} | \begin{align} | ||
Z=\frac{PV_m}{RT} | |||
\end{align} | \end{align} | ||
</math> | </math> | ||
==Departure Functions== | |||
Departure functions represent the departure of the ''real'' properties from the ''ideal'' properties - i.e the properties of a fluid at zero pressure or infinite molar volume. | |||
The departure functions of the Peng-Robinson equation of state are as follows: | |||
:<math> | :<math> | ||
\begin{align} | \begin{align} | ||
H_{m}-H_{m}^{\text{Ideal Gas}}=RT(Z-1)+\frac{T\left(\frac{da}{dT}\right)-a}{2\sqrt{2b}}\ln\left[\frac{Z+(1+\sqrt{2})B}{Z+(1-\sqrt{2})B}\right] | |||
\end{align} | \end{align} | ||
</math> | </math> | ||
:<math> | :<math> | ||
\begin{align} | \begin{align} | ||
S_{m}-S_{m}^{\text{Ideal Gas}}=R\ln (Z-B)+\frac{\frac{da}{dT}}{2\sqrt{2b}}\ln\left[\frac{Z+(1+\sqrt{2})B}{Z+(1-\sqrt{2})B}\right] | |||
\end{align} | \end{align} | ||
</math> | </math> | ||
Clearly to evaluate these functions we need to be able to evaluate <math>\frac{da}{dT}</math>: | |||
:<math> | :<math> | ||
\begin{align} | \begin{align} | ||
\frac{da}{dT}=... | |||
\end{align} | \end{align} | ||
</math> | </math> | ||
==Comparisons== | ==Comparisons== | ||
[[Category:Development]] | [[Category:Development]] | ||
Revision as of 10:50, 14 July 2011
Work on this is went on as a part of GSoC 2010 (Project Ankit) and continues as part of GSoC 2011 (Richard Towers). See also FPROPS.
Comments and suggestions are welcome
Overview
The Peng-Robinson EOS is a cubic equation of state in that it contains volume terms to the third power. It is usually expressed to give Pressure in terms of Temperature and Molar Volume:
- <math>
\begin{align} P=\frac{RT}{V_m-b}-\frac{a(T)}{V_m(V_m+b)+b(V_m-b)} \end{align} </math> It is sometimes more convenient to express the equation in terms of compressibility factor:
- <math>
\begin{align} Z^3+(-1-B)Z^2+(A-3B^2-2B)Z-AB+B^2+B^3=0 \end{align} </math> The various fluid-dependant constants and variables in the above are defined as:
- <math>
\begin{align} a(T)=0.45724\times \frac{R^2{T_c}^2}{P_c} \left(1+\kappa \left(1-\sqrt{\frac{T}{T_c}} \right) \right)^2 \end{align} </math>
- <math>
\begin{align} \kappa=0.37464+1.54226\omega - 0.26992\omega^2 \end{align} </math>
- <math>
\begin{align} A=\frac{aP}{(RT)^2} \end{align} </math>
- <math>
\begin{align} B=\frac{bP}{RT} \end{align} </math> By definition:
- <math>
\begin{align} Z=\frac{PV_m}{RT} \end{align} </math>
Departure Functions
Departure functions represent the departure of the real properties from the ideal properties - i.e the properties of a fluid at zero pressure or infinite molar volume. The departure functions of the Peng-Robinson equation of state are as follows:
- <math>
\begin{align} H_{m}-H_{m}^{\text{Ideal Gas}}=RT(Z-1)+\frac{T\left(\frac{da}{dT}\right)-a}{2\sqrt{2b}}\ln\left[\frac{Z+(1+\sqrt{2})B}{Z+(1-\sqrt{2})B}\right] \end{align} </math>
- <math>
\begin{align} S_{m}-S_{m}^{\text{Ideal Gas}}=R\ln (Z-B)+\frac{\frac{da}{dT}}{2\sqrt{2b}}\ln\left[\frac{Z+(1+\sqrt{2})B}{Z+(1-\sqrt{2})B}\right] \end{align} </math> Clearly to evaluate these functions we need to be able to evaluate <math>\frac{da}{dT}</math>:
- <math>
\begin{align} \frac{da}{dT}=... \end{align} </math>