Modified UNIFAC (Dortmund): Difference between revisions
Jump to navigation
Jump to search
mNo edit summary |
|||
| (4 intermediate revisions by the same user not shown) | |||
| Line 1: | Line 1: | ||
The following modifications are made to the [[Original UNIFAC]] model<ref>Gmehling, Kolbe, Kleiber, Rarey; Chemical Thermodynamics for Process Simulation; February 2012; Wiley ISBN 9783527312771 | The following modifications are made to the [[Original UNIFAC]] model<ref>Gmehling, Kolbe, Kleiber, Rarey; Chemical Thermodynamics for Process Simulation; February 2012; Wiley ISBN 9783527312771 | ||
</ref>: | </ref>: | ||
Combinatorial part of liquid activity coefficient: | |||
<math> ln \gamma^C_i = 1 - V'_i + ln V'_i - 5 q_i (1 - \frac{V_i}{F_i} + ln \frac{V_i}{F_i}) </math> | <math> ln \gamma^C_i = 1 - V'_i + ln V'_i - 5 q_i (1 - \frac{V_i}{F_i} + ln \frac{V_i}{F_i}) </math> | ||
Volume/mole fraction ratio: | |||
<math> V_i' = \frac{r_i^{3/4}}{\sum_j r_j^{3/4} x_j} </math> | <math> V_i' = \frac{r_i^{3/4}}{\sum_j r_j^{3/4} x_j} </math> | ||
Main group interaction parameter matrix: | |||
<math> \Psi_{nm} = exp(- { {a_{nm} + b_{nm} T + c_{nm} T^2} \over {T} }) </math> | <math> \Psi_{nm} = exp(- { {a_{nm} + b_{nm} T + c_{nm} T^2} \over {T} }) </math> | ||
| Line 14: | Line 20: | ||
== See also == | == See also == | ||
[[Original UNIFAC]] | * [[Group Contribution Methods]] | ||
[[ | |||
* [[Original UNIFAC]] | |||
* [[Predictive Soave-Redlich-Kwong (PSRK)]] | |||
Latest revision as of 14:05, 5 August 2016
The following modifications are made to the Original UNIFAC model[1]:
Combinatorial part of liquid activity coefficient:
<math> ln \gamma^C_i = 1 - V'_i + ln V'_i - 5 q_i (1 - \frac{V_i}{F_i} + ln \frac{V_i}{F_i}) </math>
Volume/mole fraction ratio:
<math> V_i' = \frac{r_i^{3/4}}{\sum_j r_j^{3/4} x_j} </math>
Main group interaction parameter matrix:
<math> \Psi_{nm} = exp(- { {a_{nm} + b_{nm} T + c_{nm} T^2} \over {T} }) </math>
References
- ↑ Gmehling, Kolbe, Kleiber, Rarey; Chemical Thermodynamics for Process Simulation; February 2012; Wiley ISBN 9783527312771