Predictive Soave-Redlich-Kwong (PSRK): Difference between revisions

From ASCEND
Jump to navigation Jump to search
MarkJones (talk | contribs)
 
(41 intermediate revisions by 2 users not shown)
Line 1: Line 1:
=== Generic cubic equation of state ===
=== Generic cubic equation of state ===


:<math> P = { { R T } \over { V - b } } - { { a(T) } \over { ( V + \epsilon b ) ( V + \sigma b ) } } </math>
:<math> P = { { R T } \over { v - b } } - { { a(T) } \over { ( v + \epsilon b ) ( v + \sigma b ) } } </math>


Parameters for Soave-Redlich-Kwong equation are <ref>Perry's Chemical Engineers' Handbook; 8th Edition; Section 4-11</ref>:
Parameters for Soave-Redlich-Kwong equation are <ref>DW Green and RH Perry, 2007. ''Perry's Chemical Engineers' Handbook'' 8th Edition, section 4-11. ISBN 9780071422949</ref>:


:<math> \epsilon = 0</math> and <math> \sigma = 1</math>
:<math> \epsilon = 0</math> and <math> \sigma = 1</math>
Line 9: Line 9:
Thus:
Thus:


:<math> P = { { R T } \over { V - b } } - { { a(T) } \over { V ( V + b ) } } </math>
:<math> P = { { R T } \over { v - b } } - { { a(T) } \over { v ( v + b ) } } </math>


=== PSRK mixing rule for calculating a(T) and b ===
=== PSRK mixing rule for calculating a(T) and b ===


Cohesion pressure (attractive parameter) <ref>Horstmann, Jabloniec, Krafczyk, Fischer, Gmehling; PSRK group contribution equation of state; Fluid Phase Equilibria 227 (2005) 157-164</ref>:
Cohesion pressure (attractive parameter)
<ref>S Horstmann, A Jabłoniec, J Krafczyk, K Fischer and J Gmehling, 2005. PSRK group contribution equation of state: comprehensive revision and extension IV, including critical constants and α-function parameters for 1000 components. ''Fluid Phase Equilibria'' '''227''' 157-164 {{doi|10.1016/j.fluid.2004.11.002}}</ref>
<ref>T Holderbaum and J Gmehling, 1991. ''Fluid Phase Equilibria'' '''79''' 251-265 {{doi|10.1016/0378-3812(91)85038-V}}</ref>:


:<math>a(T) = b RT \left( \sum x_i { {a_{ii}(T)} \over {b_i R T} } + { \frac{ { \frac{g_0^E}{R T} }  + \sum x_i \ln \left( \frac{b}{b_i} \right) }{ \ln \left( \frac{u}{u + 1} \right)} } \right)</math>
:<math>a(T) = b RT \left( \sum x_i { {a_{ii}(T)} \over {b_i R T} } + { \frac{ { \frac{g_0^E}{R T} }  + \sum x_i \ln \left( \frac{b}{b_i} \right) }{ \ln \left( \frac{u}{u + 1} \right)} } \right)</math> at <math>P^{ref}</math> = 1 atm


with
with
Line 29: Line 31:
:<math> b_i = \Omega { \frac{ RT_{C,i} }{ P_{C,i} } } </math>, and
:<math> b_i = \Omega { \frac{ RT_{C,i} }{ P_{C,i} } } </math>, and
:<math> \Omega = 0.08664 </math>
:<math> \Omega = 0.08664 </math>
Different mixing rules can be applied and a list will be compiled here:
...


=== Mathias-Copeman equation ===
=== Mathias-Copeman equation ===
Line 56: Line 54:
<math> \Rightarrow g_{0}^E = R T_0 \sum x_i  \left( \ln \frac{\omega_i}{x_i} + \frac{z}{2} + q_i \ln \frac{\theta_{ii}}{\theta_i} \right) </math>
<math> \Rightarrow g_{0}^E = R T_0 \sum x_i  \left( \ln \frac{\omega_i}{x_i} + \frac{z}{2} + q_i \ln \frac{\theta_{ii}}{\theta_i} \right) </math>


=== modified UNIFAC ===
=== UNIFAC ===




Molecular volume parameter for component i <ref>Larsen, Rasmussen, Fredenslund; A Modified UNIFAC Group-Contribution Model for Prediction of Phase Equilibria and Heats of Mixing; Ind. Eng. Chem. Res. 1987, 26 2274-2286</ref>:
Molecular volume parameter for component i (k: subgroup index) <ref>Larsen, Rasmussen, Fredenslund; A Modified UNIFAC Group-Contribution Model for Prediction of Phase Equilibria and Heats of Mixing; Ind. Eng. Chem. Res. 1987, 26 2274-2286 {{doi|10.1021/ie00071a018}}</ref>:


<math> r_i = \sum_k \nu_k^{(i)} * R_k </math>
:<math> r_i = \sum_k \nu_k^{(i)} R_k </math>


Molecular surface area parameter for component i:
Molecular surface area parameter for component i (k: subgroup index):


<math> q_i = \sum_k \nu_k^{(i)} * Q_k </math>
:<math> q_i = \sum_k \nu_k^{(i)} Q_k </math>


where <math>\nu</math> is the number of the particular subgroups which a component i can be divided into. <math>R_k</math> is the volume parameter and <math>Q_k</math> the surface area parameter for subgroup k. <math>R_k</math> and <math>Q_k</math> are tabulated parameters and provided by the UNIFAC Consortium (http://unifac.ddbst.de/). Each subgroup can be assigned to a main group.
where <math>\nu</math> is the number of the particular subgroups which a component i can be divided into. <math>R_k</math> is the volume parameter and <math>Q_k</math> the surface area parameter for subgroup k. <math>R_k</math> and <math>Q_k</math> are tabulated parameters and provided by the UNIFAC Consortium (http://unifac.ddbst.de/). Each subgroup can be assigned to a main group.
Line 71: Line 69:
Modified volume fraction [Kikic et al.; 1980]:
Modified volume fraction [Kikic et al.; 1980]:


<math> \omega_i = {{x_i * r_i^{2/3}} \over {\sum_j x_j * r_j^{2/3}}} </math>
:<math> \omega_i = {{x_i r_i^{2/3}} \over {\sum_j x_j r_j^{2/3}}} </math>


Group mole fraction <ref>Stephan, Schaber, Stephan, Mayinger: Thermodynamik. Grundlagen und technische Anwendungen: Band 2: Mehrstoffsysteme und chemische Reaktionen; Springer Verlag</ref>:
Group mole fraction of subgroup k in component i <ref>Stephan, Schaber, Stephan, Mayinger: Thermodynamik. Grundlagen und technische Anwendungen: Band 2: Mehrstoffsysteme und chemische Reaktionen; Springer Verlag ISBN 9783642241611</ref>:


<math> X_k = {{\sum_i \nu_k^{(i)} * x_i} \over {\sum_i \sum_l \nu_l^{(i)} * x_i}} </math>
:<math> X_k^{(i)} = {{\sum_i \nu_k^{(i)} x_i} \over {\sum_i \sum_l \nu_l^{(i)} x_i}} </math>


Surface area fraction for component i in mixture:
Surface area fraction of subgroup k in component i:


<math> \theta_i = { {X_i * Q_i} \over {\sum_k X_k * Q_k} } </math>
:<math> \theta_k^{(i)} = \frac{X_k^{(i)} Q_k^{(i)}}{\sum_l X_l^{(i)} Q_l^{(i)}} </math>


Local surface area fraction for j around i:
<math>\theta</math> is a matrix where the columns make up the components in the mixture and the rows are made up by the subgroups.


<math> \theta_{ji} = { {\theta_j * \tau_{ji}} \over {\sum_m \theta_m * \tau_{mi}} } </math>
Local surface area fraction for j around i (the dot-product is performed of every single subgroup-row of matrix <math>\theta</math> with the columns of matrix <math>\tau</math>):
 
:<math> \theta_{ji} = { {\theta_j \tau_{ji}} \over {\sum_m \theta_m \tau_{mi}} } </math>


where
where


<math> \tau_{mi} = \Psi_{nm} </math>
:<math> \tau_{mi} = \Psi_{nm} </math>


and <math>\tau_{mi}</math> is the Boltzmann factor and can be calculated by transposing the main group interaction parameter matrix:
and <math>\tau_{mi}</math> is the Boltzmann factor and can be calculated by transposing the main group interaction parameter matrix:


<math> \Psi_{nm} = exp(- { {a_{nm} + b_{nm}*T + c_{nm}*T^2} \over {T} }) </math>
:<math> \Psi_{nm} = exp(- { {a_{nm} + b_{nm} T + c_{nm} T^2} \over {T} }) </math>
 
:<math>a_{nm}</math>, <math>b_{nm}</math> and <math>c_{nm}</math> are the binary interaction parameters representing the interaction between the main groups where the following applies:
 
:<math> a_{nm} \ne a_{mn} </math>;
:<math> b_{nm} \ne b_{mn} </math>;
:<math> c_{nm} \ne c_{mn} </math>


<math>a_{nm}</math>, <math>b_{nm}</math> and <math>c_{nm}</math> are the binary interaction parameters representing the interaction between the main groups where the following applies:
Interaction parameters between identical main groups become 0.


<math> a_{nm} \ne a_{mn} </math>;
The indexes n and m refer to subgroups. Thus, parameters a,b and c of different subgroups belonging to the same main group are identical. A subgroup to maingroup lookup has to be made when generating the data matrices for a, b and c.
<math> b_{nm} \ne b_{mn} </math>;
<math> c_{nm} \ne c_{mn} </math>


The binary interaction parameters are also tabulated parameters and provided by the UNIFAC Consortium (http://unifac.ddbst.de/).
The binary interaction parameters are also tabulated parameters and provided by the UNIFAC Consortium (http://unifac.ddbst.de/).
The original UNIFAC model uses only <math> a_{nm} \ne a_{mn} </math> as interactions parameters. Modified UNIFAC and PSRK include <math> b_{nm} \ne b_{mn} </math> and <math> c_{nm} \ne c_{mn} </math> for describing main group interactions. Very important: PSRK relies on the modified UNIFAC equations but the parameters are different and therefore a different parameter dataset is provided for PSRK calculations.
The original UNIFAC model uses only <math> a_{nm} \ne a_{mn} </math> as interaction parameters. Modified UNIFAC and PSRK include <math> b_{nm} \ne b_{mn} </math> and <math> c_{nm} \ne c_{mn} </math> for describing main group interactions.


A Excel file written by Carl Lira (http://www.egr.msu.edu/~lira/) can help to understand UNIFAC calculations. Take a look at the ACTCOEFF.XLS file under http://www.egr.msu.edu/~lira/computer/EXCEL/. Beware of that not the modified UNIFAC method is applied in Lira's Excel sheet but the original UNIFAC method. PSRK relies on the modified UNIFAC method and uses PSRK specific parameters.
A Excel file written by Carl Lira (http://www.egr.msu.edu/~lira/) can help to understand UNIFAC calculations. Take a look at the ACTCOEFF.XLS file under http://www.egr.msu.edu/~lira/computer/EXCEL/.


The UNIFAC consortium has published all parameters for the original UNIFAC model: http://www.ddbst.com/published-parameters-unifac.html
The UNIFAC consortium has published all parameters for the original UNIFAC model: http://www.ddbst.com/published-parameters-unifac.html


For obtaining the parameters for applying the modified UNIFAC model or the PSRK model one has to become a member of the UNIFAC consortium.
For obtaining the parameters for applying the [[modified UNIFAC (Dortmund)]] model or the PSRK model one has to become a member of the UNIFAC consortium or has to have access to the appendix of the following paper: {{doi|10.1016/j.fluid.2004.11.002}}


These pages can also help to understand this topic:
These pages can also help to understand this topic:


http://www.pvv.org/~randhol/xlunifac/html/node9.html
* [http://www.pvv.org/~randhol/xlunifac/html/node9.html XLUNIFAC] (also accessible [https://pdfslide.net/documents/xlunifac-a-computer-program-for-calculation-of-liquid-randholxlunifac-.html here])
 
* http://www.aim.env.uea.ac.uk/aim/info/UNIFACgroups.html
http://www.aim.env.uea.ac.uk/aim/info/UNIFACgroups.html


=== Procedure for calculating vapor-liquid equilibria (VLE) (phi-phi approach) ===
=== Procedure for calculating vapor-liquid equilibria (VLE) (phi-phi approach) ===


Equilibrium condition <ref>Gmehling, Kolbe, Kleiber, Rarey; Chemical Thermodynamics for Process Simulation; February 2012; Wiley </ref>:
Equilibrium condition <ref>Gmehling, Kolbe, Kleiber, Rarey; Chemical Thermodynamics for Process Simulation; February 2012; Wiley ISBN 9783527312771
</ref>:


<math> x_i * \varphi_i^L = y_i * \varphi_i^V </math>
<math> x_i * \varphi_i^L = y_i * \varphi_i^V </math>


Fugacity coefficient for component i in a mixture:
Fugacity coefficient of the PSRK equation for component i in a mixture:


<math> ln \varphi_i = \frac{1}{R*T} \int_{\infty}^V [ \frac{RT}{V} - ( \frac{\partial P}{\partial n_i} )_{T, V, n_{j \ne i}} ] dV - ln z </math>
<math> ln \varphi_i = \frac{b_i}{b} (\frac{P*v}{R*T} - 1) - ln \frac{P*(v-b)}{R*T} - ( \frac{1}{q_1} * ln \gamma_i + \frac{a_i}{RTb_i} + \frac{1}{q_1}(ln \frac{b}{b_i} + \frac{b_i}{b} - 1)) ln \frac{v+b}{v} </math>


Fugacity coefficient for the liquid phase:
with <math> q_1 = -0.64663 </math>
 
...
 
Fugacity coefficient for the vapor phase:
 
...


K-factor:
K-factor:
Line 150: Line 148:


== See also ==
== See also ==
* [[Group Contribution Methods]]


Other cubic equations of state (EOS):
Other cubic equations of state (EOS):

Latest revision as of 11:38, 4 July 2022

Generic cubic equation of state

<math> P = { { R T } \over { v - b } } - { { a(T) } \over { ( v + \epsilon b ) ( v + \sigma b ) } } </math>

Parameters for Soave-Redlich-Kwong equation are [1]:

<math> \epsilon = 0</math> and <math> \sigma = 1</math>

Thus:

<math> P = { { R T } \over { v - b } } - { { a(T) } \over { v ( v + b ) } } </math>

PSRK mixing rule for calculating a(T) and b

Cohesion pressure (attractive parameter) [2] [3]:

<math>a(T) = b RT \left( \sum x_i { {a_{ii}(T)} \over {b_i R T} } + { \frac{ { \frac{g_0^E}{R T} } + \sum x_i \ln \left( \frac{b}{b_i} \right) }{ \ln \left( \frac{u}{u + 1} \right)} } \right)</math> at <math>P^{ref}</math> = 1 atm

with

<math> u = 1.1 </math>,
<math> a_{ii}(T) = \Psi \frac{ \alpha_i (T_{r,i}) R^2 T_{C,i}^2 }{ P_{C,i} } </math>, and
<math> \Psi = 0.42748 </math>.

Excluded volume or "co-volume" (repulsive parameter):

<math> b = \sum x_i b_i </math>

where

<math> b_i = \Omega { \frac{ RT_{C,i} }{ P_{C,i} } } </math>, and
<math> \Omega = 0.08664 </math>

Mathias-Copeman equation

Fitting experimental data with Mathias-Copeman parameters <math> c_{1,i} </math>, <math> c_{2,i} </math> and <math> c_{3,i} </math>:

<math> \alpha_i (T_{r,i}) = \left[ 1 + c_{1,i} \left(1 - \sqrt{T_{r,i}} \right) + c_{2,i} \left(1 - \sqrt{T_{r,i}} \right)^2 + c_{3,i} \left(1 - \sqrt{T_{r,i}} \right)^3 \right]^2 </math>

General form if no experimental data available:

<math> c_{1,i} = 0.48 + 1.574 \omega_i - 0.176 \omega_i^2 </math>
<math> c_{2,i} = 0 </math>
<math> c_{3,i} = 0 </math>

Gibbs-Excess energy

<math> g^E = g_{c}^E + g_{r}^E</math>

<math> g_{c}^E = RT \sum x_i ln( {{\omega_i} \over {x_i}} ) </math>

<math> g_{r}^E = RT \sum x_i \frac{z}{2} q_i \ln \frac{\theta_{ii}}{\theta_i} </math>

<math> \Rightarrow g_{0}^E = R T_0 \sum x_i \left( \ln \frac{\omega_i}{x_i} + \frac{z}{2} + q_i \ln \frac{\theta_{ii}}{\theta_i} \right) </math>

UNIFAC

Molecular volume parameter for component i (k: subgroup index) [4]:

<math> r_i = \sum_k \nu_k^{(i)} R_k </math>

Molecular surface area parameter for component i (k: subgroup index):

<math> q_i = \sum_k \nu_k^{(i)} Q_k </math>

where <math>\nu</math> is the number of the particular subgroups which a component i can be divided into. <math>R_k</math> is the volume parameter and <math>Q_k</math> the surface area parameter for subgroup k. <math>R_k</math> and <math>Q_k</math> are tabulated parameters and provided by the UNIFAC Consortium (http://unifac.ddbst.de/). Each subgroup can be assigned to a main group.

Modified volume fraction [Kikic et al.; 1980]:

<math> \omega_i = {{x_i r_i^{2/3}} \over {\sum_j x_j r_j^{2/3}}} </math>

Group mole fraction of subgroup k in component i [5]:

<math> X_k^{(i)} = {{\sum_i \nu_k^{(i)} x_i} \over {\sum_i \sum_l \nu_l^{(i)} x_i}} </math>

Surface area fraction of subgroup k in component i:

<math> \theta_k^{(i)} = \frac{X_k^{(i)} Q_k^{(i)}}{\sum_l X_l^{(i)} Q_l^{(i)}} </math>

<math>\theta</math> is a matrix where the columns make up the components in the mixture and the rows are made up by the subgroups.

Local surface area fraction for j around i (the dot-product is performed of every single subgroup-row of matrix <math>\theta</math> with the columns of matrix <math>\tau</math>):

<math> \theta_{ji} = { {\theta_j \tau_{ji}} \over {\sum_m \theta_m \tau_{mi}} } </math>

where

<math> \tau_{mi} = \Psi_{nm} </math>

and <math>\tau_{mi}</math> is the Boltzmann factor and can be calculated by transposing the main group interaction parameter matrix:

<math> \Psi_{nm} = exp(- { {a_{nm} + b_{nm} T + c_{nm} T^2} \over {T} }) </math>
<math>a_{nm}</math>, <math>b_{nm}</math> and <math>c_{nm}</math> are the binary interaction parameters representing the interaction between the main groups where the following applies:
<math> a_{nm} \ne a_{mn} </math>;
<math> b_{nm} \ne b_{mn} </math>;
<math> c_{nm} \ne c_{mn} </math>

Interaction parameters between identical main groups become 0.

The indexes n and m refer to subgroups. Thus, parameters a,b and c of different subgroups belonging to the same main group are identical. A subgroup to maingroup lookup has to be made when generating the data matrices for a, b and c.

The binary interaction parameters are also tabulated parameters and provided by the UNIFAC Consortium (http://unifac.ddbst.de/). The original UNIFAC model uses only <math> a_{nm} \ne a_{mn} </math> as interaction parameters. Modified UNIFAC and PSRK include <math> b_{nm} \ne b_{mn} </math> and <math> c_{nm} \ne c_{mn} </math> for describing main group interactions.

A Excel file written by Carl Lira (http://www.egr.msu.edu/~lira/) can help to understand UNIFAC calculations. Take a look at the ACTCOEFF.XLS file under http://www.egr.msu.edu/~lira/computer/EXCEL/.

The UNIFAC consortium has published all parameters for the original UNIFAC model: http://www.ddbst.com/published-parameters-unifac.html

For obtaining the parameters for applying the modified UNIFAC (Dortmund) model or the PSRK model one has to become a member of the UNIFAC consortium or has to have access to the appendix of the following paper: doi:10.1016/j.fluid.2004.11.002

These pages can also help to understand this topic:

Procedure for calculating vapor-liquid equilibria (VLE) (phi-phi approach)

Equilibrium condition [6]:

<math> x_i * \varphi_i^L = y_i * \varphi_i^V </math>

Fugacity coefficient of the PSRK equation for component i in a mixture:

<math> ln \varphi_i = \frac{b_i}{b} (\frac{P*v}{R*T} - 1) - ln \frac{P*(v-b)}{R*T} - ( \frac{1}{q_1} * ln \gamma_i + \frac{a_i}{RTb_i} + \frac{1}{q_1}(ln \frac{b}{b_i} + \frac{b_i}{b} - 1)) ln \frac{v+b}{v} </math>

with <math> q_1 = -0.64663 </math>

K-factor:

<math> K_i = { {y_i} \over {x_i} } = { {\varphi_i^L} \over {\varphi_i^V} } </math>

Sum of mole fractions:

<math> S = \sum y_i = \sum K_i * x_i </math>

Flow diagram for calculating isothermal VLE using PSRK:

Flow diagram of the phi-phi approach for calculating isothermal vapor-liquid equilibria (VLE) with the predictive Soave-Redlich-Kwong equation of state (EOS) File:Phi-phi approach PSRK.pdf

References

  1. DW Green and RH Perry, 2007. Perry's Chemical Engineers' Handbook 8th Edition, section 4-11. ISBN 9780071422949
  2. S Horstmann, A Jabłoniec, J Krafczyk, K Fischer and J Gmehling, 2005. PSRK group contribution equation of state: comprehensive revision and extension IV, including critical constants and α-function parameters for 1000 components. Fluid Phase Equilibria 227 157-164 doi:10.1016/j.fluid.2004.11.002
  3. T Holderbaum and J Gmehling, 1991. Fluid Phase Equilibria 79 251-265 doi:10.1016/0378-3812(91)85038-V
  4. Larsen, Rasmussen, Fredenslund; A Modified UNIFAC Group-Contribution Model for Prediction of Phase Equilibria and Heats of Mixing; Ind. Eng. Chem. Res. 1987, 26 2274-2286 doi:10.1021/ie00071a018
  5. Stephan, Schaber, Stephan, Mayinger: Thermodynamik. Grundlagen und technische Anwendungen: Band 2: Mehrstoffsysteme und chemische Reaktionen; Springer Verlag ISBN 9783642241611
  6. Gmehling, Kolbe, Kleiber, Rarey; Chemical Thermodynamics for Process Simulation; February 2012; Wiley ISBN 9783527312771

See also

Other cubic equations of state (EOS):