Predictive Soave-Redlich-Kwong (PSRK): Difference between revisions

From ASCEND
Jump to navigation Jump to search
MarkJones (talk | contribs)
 
(68 intermediate revisions by 2 users not shown)
Line 1: Line 1:
=== Generic cubic equation of state ===
=== Generic cubic equation of state ===


<math> P = { { R * T } \over { V - b } } - { { a(T) } \over { ( V + \epsilon * b ) * ( V + \sigma * b ) } } </math>
:<math> P = { { R T } \over { v - b } } - { { a(T) } \over { ( v + \epsilon b ) ( v + \sigma b ) } } </math>


Parameters for Soave-Redlich-Kwong equation are <ref>Perry's Chemical Engineers' Handbook; 8th Edition; Section 4-11</ref>:
Parameters for Soave-Redlich-Kwong equation are <ref>DW Green and RH Perry, 2007. ''Perry's Chemical Engineers' Handbook'' 8th Edition, section 4-11. ISBN 9780071422949</ref>:


<math> \epsilon = 0</math> and <math> \sigma = 1</math>
:<math> \epsilon = 0</math> and <math> \sigma = 1</math>


Thus:
Thus:


<math> P = { { R * T } \over { V - b } } - { { a(T) } \over { V * ( V + b ) } } </math>
:<math> P = { { R T } \over { v - b } } - { { a(T) } \over { v ( v + b ) } } </math>


=== PSRK mixing rule for calculating a(T) and b ===
=== PSRK mixing rule for calculating a(T) and b ===


Cohesion pressure (attractive parameter) <ref>Horstmann, Jabloniec, Krafczyk, Fischer, Gmehling; PSRK group contribution equation of state; Fluid Phase Equilibria 227 (2005) 157-164</ref>:
Cohesion pressure (attractive parameter)
<ref>S Horstmann, A Jabłoniec, J Krafczyk, K Fischer and J Gmehling, 2005. PSRK group contribution equation of state: comprehensive revision and extension IV, including critical constants and α-function parameters for 1000 components. ''Fluid Phase Equilibria'' '''227''' 157-164 {{doi|10.1016/j.fluid.2004.11.002}}</ref>
<ref>T Holderbaum and J Gmehling, 1991. ''Fluid Phase Equilibria'' '''79''' 251-265 {{doi|10.1016/0378-3812(91)85038-V}}</ref>:


<math> a(T) = b*R*T * ( \sum x_i * { {a_{ii}(T)} \over {b_i*R*T} } + { { { {g_0^E} \over {R*T} }  + \sum x_i * ln( b / b_i ) } \over { ln( u / (u + 1) )} } )</math>; <math> u = 1.1 </math>
:<math>a(T) = b RT \left( \sum x_i { {a_{ii}(T)} \over {b_i R T} } + { \frac{ { \frac{g_0^E}{R T} }  + \sum x_i \ln \left( \frac{b}{b_i} \right) }{ \ln \left( \frac{u}{u + 1} \right)} } \right)</math> at <math>P^{ref}</math> = 1 atm


with <math> a_{ii}(T) = \Psi * { { \alpha_i (T_{r,i}) * R^2 * T_{C,i}^2 } \over { P_{C,i} } }  </math>; <math> \Psi = 0.42748 </math>
with
:<math> u = 1.1 </math>,
:<math> a_{ii}(T) = \Psi \frac{ \alpha_i (T_{r,i}) R^2 T_{C,i}^2 }{ P_{C,i} }  </math>, and
:<math> \Psi = 0.42748 </math>.


Excluded volume or "co-volume" (repulsive parameter):
Excluded volume or "co-volume" (repulsive parameter):


<math> b = \sum x_i*b_i  </math>
<math> b = \sum x_i b_i  </math>


with <math> b_i = \Omega * { { R*T_{C,i} } \over { P_{C,i} } } </math>; <math> \Omega = 0.08664 </math>
where
:<math> b_i = \Omega { \frac{ RT_{C,i} }{ P_{C,i} } } </math>, and
:<math> \Omega = 0.08664 </math>


=== Mathias-Copeman equation ===
=== Mathias-Copeman equation ===
Line 29: Line 36:
Fitting experimental data with Mathias-Copeman parameters <math> c_{1,i} </math>, <math> c_{2,i} </math> and <math> c_{3,i} </math>:
Fitting experimental data with Mathias-Copeman parameters <math> c_{1,i} </math>, <math> c_{2,i} </math> and <math> c_{3,i} </math>:


<math> \alpha_i (T_{r,i}) =[ 1 + c_{1,i}*(1 - \sqrt{T_{r,i}}) + c_{2,i}*(1 - \sqrt{T_{r,i}})^2 + + c_{3,i}*(1 - \sqrt{T_{r,i}})^3  ]^2 </math>
:<math> \alpha_i (T_{r,i}) = \left[ 1 + c_{1,i} \left(1 - \sqrt{T_{r,i}} \right) + c_{2,i} \left(1 - \sqrt{T_{r,i}} \right)^2 + c_{3,i} \left(1 - \sqrt{T_{r,i}} \right)^3  \right]^2 </math>


General form if no experimental data available:
General form if no experimental data available:


<math> c_{1,i} = 0.48 + 1.574 \omega_i - 0.176 \omega_i^2 </math>
:<math> c_{1,i} = 0.48 + 1.574 \omega_i - 0.176 \omega_i^2 </math>
 
:<math> c_{2,i} = 0  </math>
<math> c_{2,i} = 0  </math>
:<math> c_{3,i} = 0 </math>
 
<math> c_{3,i} = 0 </math>


=== Gibbs-Excess energy ===
=== Gibbs-Excess energy ===
Line 43: Line 48:
<math> g^E = g_{c}^E + g_{r}^E</math>
<math> g^E = g_{c}^E + g_{r}^E</math>


<math> g_{c}^E = R*T * \sum x_i ln( {{\omega_i} \over {x_i}} ) </math>
<math> g_{c}^E = RT \sum x_i ln( {{\omega_i} \over {x_i}} ) </math>


<math> g_{r}^E = R*T * \sum x_i * {{z} \over {2}} * q_i * ln( { {\theta_{ii}} \over {\theta_i} } ) </math>
<math> g_{r}^E = RT \sum x_i \frac{z}{2} q_i \ln \frac{\theta_{ii}}{\theta_i} </math>


<math> -> g_{0}^E = R*T_0 * \sum x_i * ( ln( {{\omega_i} \over {x_i}} ) + {{z} \over {2}} + q_i * ln( { {\theta_{ii}} \over {\theta_i} } ) ) </math>
<math> \Rightarrow g_{0}^E = R T_0 \sum x_i \left( \ln \frac{\omega_i}{x_i} + \frac{z}{2} + q_i \ln \frac{\theta_{ii}}{\theta_i} \right) </math>


=== modified UNIFAC ===
=== UNIFAC ===




Molecular volume parameter for component i <ref>Larsen, Rasmussen, Fredenslund; A Modified UNIFAC Group-Contribution Model for Prediction of Phase Equilibria and Heats of Mixing; Ind. Eng. Chem. Res. 1987, 26 2274-2286</ref>:
Molecular volume parameter for component i (k: subgroup index) <ref>Larsen, Rasmussen, Fredenslund; A Modified UNIFAC Group-Contribution Model for Prediction of Phase Equilibria and Heats of Mixing; Ind. Eng. Chem. Res. 1987, 26 2274-2286 {{doi|10.1021/ie00071a018}}</ref>:


<math> r_i = \sum_k \nu_k^{(i)} * R_k </math>
:<math> r_i = \sum_k \nu_k^{(i)} R_k </math>


Molecular surface area parameter for component i:
Molecular surface area parameter for component i (k: subgroup index):


<math> q_i = \sum_k \nu_k^{(i)} * Q_k </math>
:<math> q_i = \sum_k \nu_k^{(i)} Q_k </math>


where <math>\nu</math> is the number of the particular subgroups which a component i can be divided into and <math>R_k</math> is the volume parameter and <math>Q_k</math> the surface area parameter for subgroup k. <math>R_k</math> and <math>Q_k</math> are tabulated parameters and provided by the UNIFAC Consortium (http://unifac.ddbst.de/). Each subgroup can be assigned to a main group.
where <math>\nu</math> is the number of the particular subgroups which a component i can be divided into. <math>R_k</math> is the volume parameter and <math>Q_k</math> the surface area parameter for subgroup k. <math>R_k</math> and <math>Q_k</math> are tabulated parameters and provided by the UNIFAC Consortium (http://unifac.ddbst.de/). Each subgroup can be assigned to a main group.


Modified volume fraction [Kikic et al.; 1980]:
Modified volume fraction [Kikic et al.; 1980]:


<math> \omega_i = {{x_i * r_i^{2/3}} \over {\sum_j x_j * r_j^{2/3}}} </math>
:<math> \omega_i = {{x_i r_i^{2/3}} \over {\sum_j x_j r_j^{2/3}}} </math>
 
Group mole fraction of subgroup k in component i <ref>Stephan, Schaber, Stephan, Mayinger: Thermodynamik. Grundlagen und technische Anwendungen: Band 2: Mehrstoffsysteme und chemische Reaktionen; Springer Verlag ISBN 9783642241611</ref>:
 
:<math> X_k^{(i)} = {{\sum_i \nu_k^{(i)} x_i} \over {\sum_i \sum_l \nu_l^{(i)} x_i}} </math>
 
Surface area fraction of subgroup k in component i:
 
:<math> \theta_k^{(i)} = \frac{X_k^{(i)} Q_k^{(i)}}{\sum_l X_l^{(i)} Q_l^{(i)}} </math>
 
<math>\theta</math> is a matrix where the columns make up the components in the mixture and the rows are made up by the subgroups.


Group mole fraction <ref>Stephan, Schaber, Stephan, Mayinger: Thermodynamik. Grundlagen und technische Anwendungen: Band 2: Mehrstoffsysteme und chemische Reaktionen; Springer Verlag</ref>:
Local surface area fraction for j around i (the dot-product is performed of every single subgroup-row of matrix <math>\theta</math> with the columns of matrix <math>\tau</math>):


<math> X_k = {{\sum_i \nu_k^{(i)} * x_i} \over {\sum_i \sum_l \nu_l^{(i)} * x_i}} </math>
:<math> \theta_{ji} = { {\theta_j \tau_{ji}} \over {\sum_m \theta_m \tau_{mi}} } </math>


Surface area fraction for component i in mixture:
where


<math> \theta_i = { {X_i * Q_i} \over {\sum_k X_k * Q_k} } </math>
:<math> \tau_{mi} = \Psi_{nm} </math>


Local surface area fraction for j around i:
and <math>\tau_{mi}</math> is the Boltzmann factor and can be calculated by transposing the main group interaction parameter matrix:


<math> \theta_{ji} = { {\theta_j * \tau_{ji}} \over {\sum_m \theta_m * \tau_{mi}} } </math>; <math> \tau_{mi} = \Psi_{nm} </math>
:<math> \Psi_{nm} = exp(- { {a_{nm} + b_{nm} T + c_{nm} T^2} \over {T} }) </math>


where <math>\tau_{mi}</math> is the Boltzmann factor and can be calculated by transposing the main group interaction parameter matrix:
:<math>a_{nm}</math>, <math>b_{nm}</math> and <math>c_{nm}</math> are the binary interaction parameters representing the interaction between the main groups where the following applies:


<math> \Psi_{nm} = exp(- { {a_{nm} + b_{nm}*T + c_{nm}*T^2} \over {T} }) </math>
:<math> a_{nm} \ne a_{mn} </math>;
:<math> b_{nm} \ne b_{mn} </math>;
:<math> c_{nm} \ne c_{mn} </math>


<math>a_{nm}</math>, <math>b_{nm}</math> and <math>c_{nm}</math> are the binary interaction parameters representing the interaction between the main groups where the following applies:
Interaction parameters between identical main groups become 0.


<math> a_{nm} \ne a_{mn} </math>;
The indexes n and m refer to subgroups. Thus, parameters a,b and c of different subgroups belonging to the same main group are identical. A subgroup to maingroup lookup has to be made when generating the data matrices for a, b and c.
<math> b_{nm} \ne b_{mn} </math>;
<math> c_{nm} \ne c_{mn} </math>


The binary interaction parameters are also tabulated parameters and provided by the UNIFAC Consortium (http://unifac.ddbst.de/).
The binary interaction parameters are also tabulated parameters and provided by the UNIFAC Consortium (http://unifac.ddbst.de/).
The original UNIFAC model uses only <math> a_{nm} \ne a_{mn} </math> as interaction parameters. Modified UNIFAC and PSRK include <math> b_{nm} \ne b_{mn} </math> and <math> c_{nm} \ne c_{mn} </math> for describing main group interactions.
A Excel file written by Carl Lira (http://www.egr.msu.edu/~lira/) can help to understand UNIFAC calculations. Take a look at the ACTCOEFF.XLS file under http://www.egr.msu.edu/~lira/computer/EXCEL/.
The UNIFAC consortium has published all parameters for the original UNIFAC model: http://www.ddbst.com/published-parameters-unifac.html
For obtaining the parameters for applying the [[modified UNIFAC (Dortmund)]] model or the PSRK model one has to become a member of the UNIFAC consortium or has to have access to the appendix of the following paper: {{doi|10.1016/j.fluid.2004.11.002}}


A Excel file written by Carl Lira (http://www.egr.msu.edu/~lira/) can help to understand UNIFAC calculations. Take a look at the ACTCOEFF.XLS file under http://www.egr.msu.edu/~lira/computer/EXCEL/. Beware of that not the modified UNIFAC method is applied in Lira's Excel sheet but the general UNIFAC method. PSRK relies on the modified UNIFAC method.
These pages can also help to understand this topic:


=== Procedure for calculating vapor-liquid equilibria (VLE) ===
* [http://www.pvv.org/~randhol/xlunifac/html/node9.html XLUNIFAC] (also accessible [https://pdfslide.net/documents/xlunifac-a-computer-program-for-calculation-of-liquid-randholxlunifac-.html here])
* http://www.aim.env.uea.ac.uk/aim/info/UNIFACgroups.html


Equilibrium condition <ref>Gmehling, Kolbe, Kleiber, Rarey; Chemical Thermodynamics for Process Simulation; February 2012; Wiley  </ref>:
=== Procedure for calculating vapor-liquid equilibria (VLE) (phi-phi approach) ===


<math> x_i * \phi_i^L = y_i * \phi_i^V </math>
Equilibrium condition <ref>Gmehling, Kolbe, Kleiber, Rarey; Chemical Thermodynamics for Process Simulation; February 2012; Wiley ISBN 9783527312771
</ref>:


Fugacity coefficient for the liquid phase:
<math> x_i * \varphi_i^L = y_i * \varphi_i^V </math>


Fugacity coefficient for the vapor phase:
Fugacity coefficient of the PSRK equation for component i in a mixture:
 
<math> ln \varphi_i = \frac{b_i}{b} (\frac{P*v}{R*T} - 1) - ln \frac{P*(v-b)}{R*T} - ( \frac{1}{q_1} * ln \gamma_i + \frac{a_i}{RTb_i} + \frac{1}{q_1}(ln \frac{b}{b_i} + \frac{b_i}{b} - 1)) ln \frac{v+b}{v} </math>
 
with <math> q_1 = -0.64663 </math>


K-factor:
K-factor:


<math> K_i = { {y_i} \over {x_i} } = { {\phi_i^L} \over {\phi_i^V} } </math>
<math> K_i = { {y_i} \over {x_i} } = { {\varphi_i^L} \over {\varphi_i^V} } </math>


Sum of mole fractions:
Sum of mole fractions:
Line 111: Line 139:


Flow diagram for calculating isothermal VLE using PSRK:
Flow diagram for calculating isothermal VLE using PSRK:
[[Image:Phi-phi_approach_PSRK.png|600px|thumb|center| Flow diagram of the phi-phi approach for calculating isothermal vapor-liquid equilibria (VLE) with the predictive Soave-Redlich-Kwong equation of
state (EOS) [[File:Phi-phi_approach_PSRK.pdf]] ]]


== References ==
== References ==
Line 116: Line 147:
<references/>
<references/>


== See Also ==
== See also ==
 
* [[Group Contribution Methods]]


Other cubic equations of state (EOS):
Other cubic equations of state (EOS):
Line 123: Line 156:
* [[Redlich Kwong EOS in FPROPS]]
* [[Redlich Kwong EOS in FPROPS]]


[[Category:Proposed]]
[[Category:Development]]
[[Category:Development]]
[[Category:Documentation]]
[[Category:Documentation]]

Latest revision as of 11:38, 4 July 2022

Generic cubic equation of state

<math> P = { { R T } \over { v - b } } - { { a(T) } \over { ( v + \epsilon b ) ( v + \sigma b ) } } </math>

Parameters for Soave-Redlich-Kwong equation are [1]:

<math> \epsilon = 0</math> and <math> \sigma = 1</math>

Thus:

<math> P = { { R T } \over { v - b } } - { { a(T) } \over { v ( v + b ) } } </math>

PSRK mixing rule for calculating a(T) and b

Cohesion pressure (attractive parameter) [2] [3]:

<math>a(T) = b RT \left( \sum x_i { {a_{ii}(T)} \over {b_i R T} } + { \frac{ { \frac{g_0^E}{R T} } + \sum x_i \ln \left( \frac{b}{b_i} \right) }{ \ln \left( \frac{u}{u + 1} \right)} } \right)</math> at <math>P^{ref}</math> = 1 atm

with

<math> u = 1.1 </math>,
<math> a_{ii}(T) = \Psi \frac{ \alpha_i (T_{r,i}) R^2 T_{C,i}^2 }{ P_{C,i} } </math>, and
<math> \Psi = 0.42748 </math>.

Excluded volume or "co-volume" (repulsive parameter):

<math> b = \sum x_i b_i </math>

where

<math> b_i = \Omega { \frac{ RT_{C,i} }{ P_{C,i} } } </math>, and
<math> \Omega = 0.08664 </math>

Mathias-Copeman equation

Fitting experimental data with Mathias-Copeman parameters <math> c_{1,i} </math>, <math> c_{2,i} </math> and <math> c_{3,i} </math>:

<math> \alpha_i (T_{r,i}) = \left[ 1 + c_{1,i} \left(1 - \sqrt{T_{r,i}} \right) + c_{2,i} \left(1 - \sqrt{T_{r,i}} \right)^2 + c_{3,i} \left(1 - \sqrt{T_{r,i}} \right)^3 \right]^2 </math>

General form if no experimental data available:

<math> c_{1,i} = 0.48 + 1.574 \omega_i - 0.176 \omega_i^2 </math>
<math> c_{2,i} = 0 </math>
<math> c_{3,i} = 0 </math>

Gibbs-Excess energy

<math> g^E = g_{c}^E + g_{r}^E</math>

<math> g_{c}^E = RT \sum x_i ln( {{\omega_i} \over {x_i}} ) </math>

<math> g_{r}^E = RT \sum x_i \frac{z}{2} q_i \ln \frac{\theta_{ii}}{\theta_i} </math>

<math> \Rightarrow g_{0}^E = R T_0 \sum x_i \left( \ln \frac{\omega_i}{x_i} + \frac{z}{2} + q_i \ln \frac{\theta_{ii}}{\theta_i} \right) </math>

UNIFAC

Molecular volume parameter for component i (k: subgroup index) [4]:

<math> r_i = \sum_k \nu_k^{(i)} R_k </math>

Molecular surface area parameter for component i (k: subgroup index):

<math> q_i = \sum_k \nu_k^{(i)} Q_k </math>

where <math>\nu</math> is the number of the particular subgroups which a component i can be divided into. <math>R_k</math> is the volume parameter and <math>Q_k</math> the surface area parameter for subgroup k. <math>R_k</math> and <math>Q_k</math> are tabulated parameters and provided by the UNIFAC Consortium (http://unifac.ddbst.de/). Each subgroup can be assigned to a main group.

Modified volume fraction [Kikic et al.; 1980]:

<math> \omega_i = {{x_i r_i^{2/3}} \over {\sum_j x_j r_j^{2/3}}} </math>

Group mole fraction of subgroup k in component i [5]:

<math> X_k^{(i)} = {{\sum_i \nu_k^{(i)} x_i} \over {\sum_i \sum_l \nu_l^{(i)} x_i}} </math>

Surface area fraction of subgroup k in component i:

<math> \theta_k^{(i)} = \frac{X_k^{(i)} Q_k^{(i)}}{\sum_l X_l^{(i)} Q_l^{(i)}} </math>

<math>\theta</math> is a matrix where the columns make up the components in the mixture and the rows are made up by the subgroups.

Local surface area fraction for j around i (the dot-product is performed of every single subgroup-row of matrix <math>\theta</math> with the columns of matrix <math>\tau</math>):

<math> \theta_{ji} = { {\theta_j \tau_{ji}} \over {\sum_m \theta_m \tau_{mi}} } </math>

where

<math> \tau_{mi} = \Psi_{nm} </math>

and <math>\tau_{mi}</math> is the Boltzmann factor and can be calculated by transposing the main group interaction parameter matrix:

<math> \Psi_{nm} = exp(- { {a_{nm} + b_{nm} T + c_{nm} T^2} \over {T} }) </math>
<math>a_{nm}</math>, <math>b_{nm}</math> and <math>c_{nm}</math> are the binary interaction parameters representing the interaction between the main groups where the following applies:
<math> a_{nm} \ne a_{mn} </math>;
<math> b_{nm} \ne b_{mn} </math>;
<math> c_{nm} \ne c_{mn} </math>

Interaction parameters between identical main groups become 0.

The indexes n and m refer to subgroups. Thus, parameters a,b and c of different subgroups belonging to the same main group are identical. A subgroup to maingroup lookup has to be made when generating the data matrices for a, b and c.

The binary interaction parameters are also tabulated parameters and provided by the UNIFAC Consortium (http://unifac.ddbst.de/). The original UNIFAC model uses only <math> a_{nm} \ne a_{mn} </math> as interaction parameters. Modified UNIFAC and PSRK include <math> b_{nm} \ne b_{mn} </math> and <math> c_{nm} \ne c_{mn} </math> for describing main group interactions.

A Excel file written by Carl Lira (http://www.egr.msu.edu/~lira/) can help to understand UNIFAC calculations. Take a look at the ACTCOEFF.XLS file under http://www.egr.msu.edu/~lira/computer/EXCEL/.

The UNIFAC consortium has published all parameters for the original UNIFAC model: http://www.ddbst.com/published-parameters-unifac.html

For obtaining the parameters for applying the modified UNIFAC (Dortmund) model or the PSRK model one has to become a member of the UNIFAC consortium or has to have access to the appendix of the following paper: doi:10.1016/j.fluid.2004.11.002

These pages can also help to understand this topic:

Procedure for calculating vapor-liquid equilibria (VLE) (phi-phi approach)

Equilibrium condition [6]:

<math> x_i * \varphi_i^L = y_i * \varphi_i^V </math>

Fugacity coefficient of the PSRK equation for component i in a mixture:

<math> ln \varphi_i = \frac{b_i}{b} (\frac{P*v}{R*T} - 1) - ln \frac{P*(v-b)}{R*T} - ( \frac{1}{q_1} * ln \gamma_i + \frac{a_i}{RTb_i} + \frac{1}{q_1}(ln \frac{b}{b_i} + \frac{b_i}{b} - 1)) ln \frac{v+b}{v} </math>

with <math> q_1 = -0.64663 </math>

K-factor:

<math> K_i = { {y_i} \over {x_i} } = { {\varphi_i^L} \over {\varphi_i^V} } </math>

Sum of mole fractions:

<math> S = \sum y_i = \sum K_i * x_i </math>

Flow diagram for calculating isothermal VLE using PSRK:

Flow diagram of the phi-phi approach for calculating isothermal vapor-liquid equilibria (VLE) with the predictive Soave-Redlich-Kwong equation of state (EOS) File:Phi-phi approach PSRK.pdf

References

  1. DW Green and RH Perry, 2007. Perry's Chemical Engineers' Handbook 8th Edition, section 4-11. ISBN 9780071422949
  2. S Horstmann, A Jabłoniec, J Krafczyk, K Fischer and J Gmehling, 2005. PSRK group contribution equation of state: comprehensive revision and extension IV, including critical constants and α-function parameters for 1000 components. Fluid Phase Equilibria 227 157-164 doi:10.1016/j.fluid.2004.11.002
  3. T Holderbaum and J Gmehling, 1991. Fluid Phase Equilibria 79 251-265 doi:10.1016/0378-3812(91)85038-V
  4. Larsen, Rasmussen, Fredenslund; A Modified UNIFAC Group-Contribution Model for Prediction of Phase Equilibria and Heats of Mixing; Ind. Eng. Chem. Res. 1987, 26 2274-2286 doi:10.1021/ie00071a018
  5. Stephan, Schaber, Stephan, Mayinger: Thermodynamik. Grundlagen und technische Anwendungen: Band 2: Mehrstoffsysteme und chemische Reaktionen; Springer Verlag ISBN 9783642241611
  6. Gmehling, Kolbe, Kleiber, Rarey; Chemical Thermodynamics for Process Simulation; February 2012; Wiley ISBN 9783527312771

See also

Other cubic equations of state (EOS):