FPROPS/Viscosity: Difference between revisions
No edit summary |
m →First correlation: corrected some typos |
||
| (3 intermediate revisions by one other user not shown) | |||
| Line 3: | Line 3: | ||
== First correlation == | == First correlation == | ||
Driven by the use-case of transport properties for supercritical carbon dioxide, the first required viscosity correlation follows this form<ref>A | Driven by the use-case of transport properties for supercritical carbon dioxide, the first required viscosity correlation follows this form<ref>A Fenghour, W A Wakeham and V Vesovic, 1998. "The Viscosity of Carbon Dioxide", ''J Phys Chem Ref Data'' '''27'''(1) ({{doi|10.1063/1.556013}}, [http://web.mit.edu/ruddman/Public/Thermodynamics/co2%20viscosity.pdf pdf])</ref><ref>E W Lemmon and R T Jacobsen, 2004. "Viscosity and Thermal Conductivity Equations for Nitrogen, Oxgen, Argon and Air", ''International Journal of Thermophysics'' '''25'''(1) ({{doi|10.1023/B:IJOT.0000022327.04529.f3}}, [http://www.boulder.nist.gov/div838/theory/refprop/NAO.PDF pdf])</ref> | ||
:<math>\mu = \mu_0 \left(T \right) + \mu_r \left(\tau,\delta \right) + \mu_c \left(\tau, \delta \right)</math> | :<math>\mu = \mu_0 \left(T \right) + \mu_r \left(\tau,\delta \right) + \mu_c \left(\tau, \delta \right)</math> | ||
| Line 13: | Line 13: | ||
:<math>\mu_0 \left( T \right) = \frac{0.0266958 \sqrt{MT}}{\sigma^2 \Omega \left(T^{{}*{}}\right)}</math> | :<math>\mu_0 \left( T \right) = \frac{0.0266958 \sqrt{MT}}{\sigma^2 \Omega \left(T^{{}*{}}\right)}</math> | ||
Here, <math>\sigma</math> is referred to as the ''Lennard-Jones size parameter'', and is a length value specific to each fluid. <math>M</math> | Here, <math>\sigma</math> is referred to as the ''Lennard-Jones size parameter'', and is a length value specific to each fluid. <math>M</math> is the molecular mass. The units of the value <math>0.0266958</math> need to be determined; Lemmon & Jacobsen state that the result as-written is returned in units of µPa·s. The expression <math>\Omega\left(T^{{}*{}}\right)</math> is referred to as the ''collision integral'' and is a series with fluid-specific coefficients <math>b_i</math> and exponents <math>i</math>, calculated as | ||
:<math>\Omega \left( T^{{}*{}} \right) = \exp \left(\sum_{i=0}^{n}{b_i {\left[\ln \left( T^{{}*{}} \right) \right]} ^i} \right)</math> | :<math>\Omega \left( T^{{}*{}} \right) = \exp \left(\sum_{i=0}^{n}{b_i {\left[\ln \left( T^{{}*{}} \right) \right]} ^i} \right)</math> | ||
| Line 21: | Line 21: | ||
:<math>\mu_r \left(\tau,\delta\right) = \sum_{i=1}^{n}{N_i \tau^{t_i} \delta^{d_i} \exp \left(-\gamma_i \delta^{l_i} \right)}</math> | :<math>\mu_r \left(\tau,\delta\right) = \sum_{i=1}^{n}{N_i \tau^{t_i} \delta^{d_i} \exp \left(-\gamma_i \delta^{l_i} \right)}</math> | ||
where a table with n rows of values for <math>N_i</math>, <math>t_i</math>, <math>d_i</math> and <math>l_i</math> | where <math>\tau = T_c / T</math>, <math>\delta = \rho / \rho_c</math>, and fluid-specific correlation data provides a table with n rows of values for <math>N_i</math>, <math>t_i</math>, <math>d_i</math> and <math>l_i</math>. The coefficient <math>\gamma_i</math> is defined as | ||
:<math>\gamma_i = \begin{cases} | :<math>\gamma_i = \begin{cases} | ||
Latest revision as of 14:11, 2 January 2016
Calculation of viscosity in FPROPS is currently in development. Ultimately, different publications provide different types of correlations (equations), so we implement a system that permits alternative correlations to be selected.
First correlation
Driven by the use-case of transport properties for supercritical carbon dioxide, the first required viscosity correlation follows this form[1][2]
- <math>\mu = \mu_0 \left(T \right) + \mu_r \left(\tau,\delta \right) + \mu_c \left(\tau, \delta \right)</math>
where dynamic viscosity <math>\mu</math> is the sum of an ideal (zero-pressure) component <math>\mu_0</math>, a residual component <math>\mu_r</math>, and optionally, a critical-region component <math>\mu_c</math>. Note that viscosity is said to increase to infinity in the vicinity of the critical point (which seems to suggest that it would make more sense to calculate in terms of something like an 'inviscidity' instead...?)
The ideal part is calculated as
- <math>\mu_0 \left( T \right) = \frac{0.0266958 \sqrt{MT}}{\sigma^2 \Omega \left(T^{{}*{}}\right)}</math>
Here, <math>\sigma</math> is referred to as the Lennard-Jones size parameter, and is a length value specific to each fluid. <math>M</math> is the molecular mass. The units of the value <math>0.0266958</math> need to be determined; Lemmon & Jacobsen state that the result as-written is returned in units of µPa·s. The expression <math>\Omega\left(T^{{}*{}}\right)</math> is referred to as the collision integral and is a series with fluid-specific coefficients <math>b_i</math> and exponents <math>i</math>, calculated as
- <math>\Omega \left( T^{{}*{}} \right) = \exp \left(\sum_{i=0}^{n}{b_i {\left[\ln \left( T^{{}*{}} \right) \right]} ^i} \right)</math>
The residual part is calculated more simply, as
- <math>\mu_r \left(\tau,\delta\right) = \sum_{i=1}^{n}{N_i \tau^{t_i} \delta^{d_i} \exp \left(-\gamma_i \delta^{l_i} \right)}</math>
where <math>\tau = T_c / T</math>, <math>\delta = \rho / \rho_c</math>, and fluid-specific correlation data provides a table with n rows of values for <math>N_i</math>, <math>t_i</math>, <math>d_i</math> and <math>l_i</math>. The coefficient <math>\gamma_i</math> is defined as
- <math>\gamma_i = \begin{cases}
0 & l_i = 0 \\ 1 & \mbox{otherwise} \end{cases} </math>
The critical-point component, <math>\mu_c</math> is not yet implemented.
References
- ↑ A Fenghour, W A Wakeham and V Vesovic, 1998. "The Viscosity of Carbon Dioxide", J Phys Chem Ref Data 27(1) (doi:10.1063/1.556013, pdf)
- ↑ E W Lemmon and R T Jacobsen, 2004. "Viscosity and Thermal Conductivity Equations for Nitrogen, Oxgen, Argon and Air", International Journal of Thermophysics 25(1) (doi:10.1023/B:IJOT.0000022327.04529.f3, pdf)