PengRobinson EOS in FPROPS: Difference between revisions
No edit summary |
|||
| (41 intermediate revisions by 3 users not shown) | |||
| Line 1: | Line 1: | ||
{{task}} | |||
Work on this is went on as a part of GSoC 2010 (Project [[User:Ankitml|Ankit]]) and continues as part of GSoC 2011 ([[User:richardTowers|Richard Towers]]). | |||
See also [[FPROPS]]. | |||
= | Comments and suggestions are welcome | ||
< | ==Overview== | ||
The Peng-Robinson EOS is a cubic equation of state in that it contains volume terms to the third power. It is usually expressed to give pressure in terms of temperature and molar volume <math>{\bar v}</math>: | |||
:<math> | |||
p =\frac{{\bar R} T}{{\bar v}-b}-\frac{a(T)}{{\bar v}({\bar v}+b)+b({\bar v}-b)} | |||
</math> | |||
where | |||
:<math>\begin{align} | |||
a(T) &= 0.45724 \frac{{\bar R}^2{T_c}^2}{p_c} \alpha \left(T \right) \\ | |||
\alpha &= \left( 1+\kappa \left( 1-\sqrt{\frac{T}{T_c}} \right) \right)^2 \\ | |||
\kappa &= 0.37464+1.54226\omega - 0.26992\omega^2 \\ | |||
b &= \frac{0.0778\bar R T_c}{p_c} | |||
{ | \end{align} | ||
</math> | |||
It is sometimes more convenient to express the equation as a cubic polynomial in terms of compressibility factor <math>Z</math> | |||
:<math> | |||
Z^3+(-1+B)Z^2+(A-3B^2-2B)Z-(AB-B^2-B^3)=0 | |||
</math> | |||
in which | |||
:<math> | |||
\begin{align} | |||
A &= \frac{a \left(T \right) p}{({\bar R} T)^2} \\ | |||
B &= \frac{b p}{{\bar R} T} \\ | |||
Z &= \frac{p {\bar v}}{{\bar R} T} | |||
\end{align} | |||
</math> | |||
==Departure Functions== | |||
} | Departure functions represent the departure of the ''real'' properties from the ''ideal'' properties - i.e the properties of a fluid at zero pressure or infinite molar volume. | ||
The departure functions of the Peng-Robinson equation of state are as follows: | |||
:<math> | |||
\begin{align} | |||
H_{m}-H_{m}^{\text{ideal}}&={\bar R} T(Z-1)+\frac{T\left(\frac{da}{dT}\right)-a}{2\sqrt{2}b}\ln\left[\frac{Z+(1+\sqrt{2})B}{Z+(1-\sqrt{2})B}\right] \\ | |||
S_{m}-S_{m}^{\text{ideal}}&={\bar R} \ln (Z-B)+\frac{\frac{da}{dT}}{2\sqrt{2}b}\ln\left[\frac{Z+(1+\sqrt{2})B}{Z+(1-\sqrt{2})B}\right] | |||
{ | \end{align} | ||
</math> | |||
Clearly to evaluate these functions we need to be able to evaluate <math>\frac{da}{dT}</math> (checked, agrees with Sandler): | |||
} | |||
:<math> | |||
{ | \frac{da}{dT}= -0.45724 \frac{{\bar R}^{2} {T_c}^{\frac{3}{2}} }{p_c} \kappa \frac{\sqrt{\alpha} }{ \sqrt{T}} | ||
</math> | |||
==Comparisons== | |||
[[Category:Development]] | |||
Latest revision as of 23:38, 13 January 2013
Work on this is went on as a part of GSoC 2010 (Project Ankit) and continues as part of GSoC 2011 (Richard Towers). See also FPROPS.
Comments and suggestions are welcome
Overview
The Peng-Robinson EOS is a cubic equation of state in that it contains volume terms to the third power. It is usually expressed to give pressure in terms of temperature and molar volume <math>{\bar v}</math>:
- <math>
p =\frac{{\bar R} T}{{\bar v}-b}-\frac{a(T)}{{\bar v}({\bar v}+b)+b({\bar v}-b)} </math> where
- <math>\begin{align}
a(T) &= 0.45724 \frac{{\bar R}^2{T_c}^2}{p_c} \alpha \left(T \right) \\
\alpha &= \left( 1+\kappa \left( 1-\sqrt{\frac{T}{T_c}} \right) \right)^2 \\
\kappa &= 0.37464+1.54226\omega - 0.26992\omega^2 \\
b &= \frac{0.0778\bar R T_c}{p_c} \end{align} </math>
It is sometimes more convenient to express the equation as a cubic polynomial in terms of compressibility factor <math>Z</math>
- <math>
Z^3+(-1+B)Z^2+(A-3B^2-2B)Z-(AB-B^2-B^3)=0 </math> in which
- <math>
\begin{align} A &= \frac{a \left(T \right) p}{({\bar R} T)^2} \\ B &= \frac{b p}{{\bar R} T} \\ Z &= \frac{p {\bar v}}{{\bar R} T} \end{align} </math>
Departure Functions
Departure functions represent the departure of the real properties from the ideal properties - i.e the properties of a fluid at zero pressure or infinite molar volume. The departure functions of the Peng-Robinson equation of state are as follows:
- <math>
\begin{align} H_{m}-H_{m}^{\text{ideal}}&={\bar R} T(Z-1)+\frac{T\left(\frac{da}{dT}\right)-a}{2\sqrt{2}b}\ln\left[\frac{Z+(1+\sqrt{2})B}{Z+(1-\sqrt{2})B}\right] \\
S_{m}-S_{m}^{\text{ideal}}&={\bar R} \ln (Z-B)+\frac{\frac{da}{dT}}{2\sqrt{2}b}\ln\left[\frac{Z+(1+\sqrt{2})B}{Z+(1-\sqrt{2})B}\right] \end{align} </math> Clearly to evaluate these functions we need to be able to evaluate <math>\frac{da}{dT}</math> (checked, agrees with Sandler):
- <math>
\frac{da}{dT}= -0.45724 \frac{{\bar R}^{2} {T_c}^{\frac{3}{2}} }{p_c} \kappa \frac{\sqrt{\alpha} }{ \sqrt{T}} </math>