PengRobinson EOS in FPROPS: Difference between revisions
| (14 intermediate revisions by 2 users not shown) | |||
| Line 5: | Line 5: | ||
Comments and suggestions are welcome | Comments and suggestions are welcome | ||
==Overview== | ==Overview== | ||
The Peng-Robinson EOS is a cubic equation of state in that it contains volume terms to the third power. It is usually expressed to give | The Peng-Robinson EOS is a cubic equation of state in that it contains volume terms to the third power. It is usually expressed to give pressure in terms of temperature and molar volume <math>{\bar v}</math>: | ||
:<math> | :<math> | ||
p =\frac{{\bar R} T}{{\bar v}-b}-\frac{a(T)}{{\bar v}({\bar v}+b)+b({\bar v}-b)} | |||
</math> | </math> | ||
where | where | ||
:<math>\begin{align} | :<math>\begin{align} | ||
a(T)&=0.45724 \frac{R^2{T_c}^2}{ | a(T) &= 0.45724 \frac{{\bar R}^2{T_c}^2}{p_c} \alpha \left(T \right) \\ | ||
\kappa&=0.37464+1.54226\omega - 0.26992\omega^2 | \alpha &= \left( 1+\kappa \left( 1-\sqrt{\frac{T}{T_c}} \right) \right)^2 \\ | ||
\kappa &= 0.37464+1.54226\omega - 0.26992\omega^2 \\ | |||
b &= \frac{0.0778\bar R T_c}{p_c} | |||
\end{align} | \end{align} | ||
</math> | </math> | ||
It is sometimes more convenient to express the equation as a cubic polynomial in terms of compressibility factor <math>Z | It is sometimes more convenient to express the equation as a cubic polynomial in terms of compressibility factor <math>Z</math> | ||
:<math> | :<math> | ||
Z^3+(-1+B)Z^2+(A-3B^2-2B)Z-(AB-B^2-B^3)=0 | |||
Z^3+(-1 | |||
</math> | </math> | ||
in which | in which | ||
:<math> | :<math> | ||
\begin{align} | \begin{align} | ||
A=\frac{ | A &= \frac{a \left(T \right) p}{({\bar R} T)^2} \\ | ||
B=\frac{ | B &= \frac{b p}{{\bar R} T} \\ | ||
Z &= \frac{p {\bar v}}{{\bar R} T} | |||
\end{align} | \end{align} | ||
</math> | </math> | ||
| Line 37: | Line 40: | ||
:<math> | :<math> | ||
\begin{align} | \begin{align} | ||
H_{m}-H_{m}^{\text{ideal}}&= | H_{m}-H_{m}^{\text{ideal}}&={\bar R} T(Z-1)+\frac{T\left(\frac{da}{dT}\right)-a}{2\sqrt{2}b}\ln\left[\frac{Z+(1+\sqrt{2})B}{Z+(1-\sqrt{2})B}\right] \\ | ||
S_{m}-S_{m}^{\text{ideal}}&=R\ln (Z-B)+\frac{\frac{da}{dT}}{2\sqrt{2}b}\ln\left[\frac{Z+(1+\sqrt{2})B}{Z+(1-\sqrt{2})B}\right] | S_{m}-S_{m}^{\text{ideal}}&={\bar R} \ln (Z-B)+\frac{\frac{da}{dT}}{2\sqrt{2}b}\ln\left[\frac{Z+(1+\sqrt{2})B}{Z+(1-\sqrt{2})B}\right] | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
Clearly to evaluate these functions we need to be able to evaluate <math>\frac{da}{dT}</math> | Clearly to evaluate these functions we need to be able to evaluate <math>\frac{da}{dT}</math> (checked, agrees with Sandler): | ||
: | |||
:<math> | :<math> | ||
\frac{da}{dT}= -0.45724 \frac{{\bar R}^{2} {T_c}^{\frac{3}{2}} }{p_c} \kappa \frac{\sqrt{\alpha} }{ \sqrt{T}} | |||
\frac{da}{dT}=- 0.45724 \frac{ | |||
</math> | </math> | ||
Latest revision as of 23:38, 13 January 2013
Work on this is went on as a part of GSoC 2010 (Project Ankit) and continues as part of GSoC 2011 (Richard Towers). See also FPROPS.
Comments and suggestions are welcome
Overview
The Peng-Robinson EOS is a cubic equation of state in that it contains volume terms to the third power. It is usually expressed to give pressure in terms of temperature and molar volume <math>{\bar v}</math>:
- <math>
p =\frac{{\bar R} T}{{\bar v}-b}-\frac{a(T)}{{\bar v}({\bar v}+b)+b({\bar v}-b)} </math> where
- <math>\begin{align}
a(T) &= 0.45724 \frac{{\bar R}^2{T_c}^2}{p_c} \alpha \left(T \right) \\
\alpha &= \left( 1+\kappa \left( 1-\sqrt{\frac{T}{T_c}} \right) \right)^2 \\
\kappa &= 0.37464+1.54226\omega - 0.26992\omega^2 \\
b &= \frac{0.0778\bar R T_c}{p_c} \end{align} </math>
It is sometimes more convenient to express the equation as a cubic polynomial in terms of compressibility factor <math>Z</math>
- <math>
Z^3+(-1+B)Z^2+(A-3B^2-2B)Z-(AB-B^2-B^3)=0 </math> in which
- <math>
\begin{align} A &= \frac{a \left(T \right) p}{({\bar R} T)^2} \\ B &= \frac{b p}{{\bar R} T} \\ Z &= \frac{p {\bar v}}{{\bar R} T} \end{align} </math>
Departure Functions
Departure functions represent the departure of the real properties from the ideal properties - i.e the properties of a fluid at zero pressure or infinite molar volume. The departure functions of the Peng-Robinson equation of state are as follows:
- <math>
\begin{align} H_{m}-H_{m}^{\text{ideal}}&={\bar R} T(Z-1)+\frac{T\left(\frac{da}{dT}\right)-a}{2\sqrt{2}b}\ln\left[\frac{Z+(1+\sqrt{2})B}{Z+(1-\sqrt{2})B}\right] \\
S_{m}-S_{m}^{\text{ideal}}&={\bar R} \ln (Z-B)+\frac{\frac{da}{dT}}{2\sqrt{2}b}\ln\left[\frac{Z+(1+\sqrt{2})B}{Z+(1-\sqrt{2})B}\right] \end{align} </math> Clearly to evaluate these functions we need to be able to evaluate <math>\frac{da}{dT}</math> (checked, agrees with Sandler):
- <math>
\frac{da}{dT}= -0.45724 \frac{{\bar R}^{2} {T_c}^{\frac{3}{2}} }{p_c} \kappa \frac{\sqrt{\alpha} }{ \sqrt{T}} </math>