Redlich Kwong EOS in FPROPS: Difference between revisions
| Line 12: | Line 12: | ||
==Departure Functions== | ==Departure Functions== | ||
Other thermodynamic properties can be calculated from the departure functions: | Other thermodynamic properties can be calculated from the departure functions: | ||
Helmholtz Energy: | |||
<math> | <math> | ||
| Line 18: | Line 20: | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
Entropy: | |||
<math> | <math> | ||
| Line 24: | Line 28: | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
Enthalpy: | |||
<math> | <math> | ||
| Line 30: | Line 36: | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
Internal Energy: | |||
<math> | <math> | ||
| Line 36: | Line 44: | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
Gibbs free energy: | |||
<math> | <math> | ||
| Line 42: | Line 52: | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
Specific Heat Capacity at Constant Pressure: | |||
Specific Heat Capacity at Constant Temperature: | |||
==Other Properties== | |||
Fugacity: | |||
<math> | <math> | ||
Latest revision as of 10:15, 15 June 2011
Work on this continues as part of GSoC 2011 (Richard Towers). See also FPROPS, PengRobinson EOS in FPROPS.
Overview
The Redlich-Kwong equation of state is one of several cubic equations of state that FPROPS aims to implement in the future. In its basic form it relates pressure to temperature and relative volume:
<math> \begin{align} P=\frac{RT}{V-b}-\frac{a}{V(V+b)} \end{align} </math>
Departure Functions
Other thermodynamic properties can be calculated from the departure functions:
Helmholtz Energy:
<math> \begin{align} A-A^{0}=-RT\ln\frac{V-b}{V}-\frac{a}{b}\ln\frac{V+b}{V}-RT\ln\frac{V}{V^{0}} \end{align} </math>
Entropy:
<math> \begin{align} S-S^{0}=R\ln\frac{V-b}{V}-\frac{a}{2bT}\ln\frac{V+b}{V}+R\ln\frac{V}{V^{0}} \end{align} </math>
Enthalpy:
<math> \begin{align} H-H^{0}=\frac{bRT}{V-b}-\frac{a}{V+b}-\frac{3a}{2b}\ln\frac{V+b}{V} \end{align} </math>
Internal Energy:
<math> \begin{align} U-U^{0}=-\frac{3a}{2b}\ln\frac{V+b}{V} \end{align} </math>
Gibbs free energy:
<math> \begin{align} G-G^{0}=\frac{bRT}{V-b}-\frac{a}{V+b}-RT\ln\frac{V-b}{V}-\frac{a}{b}\ln\frac{V+b}{V}-RT\ln\frac{V}{V^{0}} \end{align} </math>
Specific Heat Capacity at Constant Pressure:
Specific Heat Capacity at Constant Temperature:
Other Properties
Fugacity:
<math> \begin{align} \ln\frac{f}{P}=\frac{b}{V-b}-\frac{a}{RT(V+b)}-\ln\frac{V-b}{V}-\frac{a}{bRT}\ln\frac{V+b}{V}-\ln\left(\frac{V}{V-b}-\frac{a}{RT(V+b)}\right) \end{align} </math>