Redlich Kwong EOS in FPROPS: Difference between revisions

From ASCEND
Jump to navigation Jump to search
Basics of Redlich Kwong
 
 
(One intermediate revision by the same user not shown)
Line 10: Line 10:
</math>
</math>


==Departure Functions==
Other thermodynamic properties can be calculated from the departure functions:
Other thermodynamic properties can be calculated from the departure functions:
Helmholtz Energy:


<math>
<math>
Line 17: Line 20:
\end{align}
\end{align}
</math>
</math>
Entropy:


<math>
<math>
Line 23: Line 28:
\end{align}
\end{align}
</math>
</math>
Enthalpy:


<math>
<math>
Line 29: Line 36:
\end{align}
\end{align}
</math>
</math>
Internal Energy:


<math>
<math>
Line 35: Line 44:
\end{align}
\end{align}
</math>
</math>
Gibbs free energy:


<math>
<math>
Line 41: Line 52:
\end{align}
\end{align}
</math>
</math>
Specific Heat Capacity at Constant Pressure:
Specific Heat Capacity at Constant Temperature:
==Other Properties==
Fugacity:


<math>
<math>

Latest revision as of 10:15, 15 June 2011

This article is about planned development or proposed functionality. Comments welcome.

Work on this continues as part of GSoC 2011 (Richard Towers). See also FPROPS, PengRobinson EOS in FPROPS.

Overview

The Redlich-Kwong equation of state is one of several cubic equations of state that FPROPS aims to implement in the future. In its basic form it relates pressure to temperature and relative volume:

<math> \begin{align} P=\frac{RT}{V-b}-\frac{a}{V(V+b)} \end{align} </math>

Departure Functions

Other thermodynamic properties can be calculated from the departure functions:

Helmholtz Energy:

<math> \begin{align} A-A^{0}=-RT\ln\frac{V-b}{V}-\frac{a}{b}\ln\frac{V+b}{V}-RT\ln\frac{V}{V^{0}} \end{align} </math>

Entropy:

<math> \begin{align} S-S^{0}=R\ln\frac{V-b}{V}-\frac{a}{2bT}\ln\frac{V+b}{V}+R\ln\frac{V}{V^{0}} \end{align} </math>

Enthalpy:

<math> \begin{align} H-H^{0}=\frac{bRT}{V-b}-\frac{a}{V+b}-\frac{3a}{2b}\ln\frac{V+b}{V} \end{align} </math>

Internal Energy:

<math> \begin{align} U-U^{0}=-\frac{3a}{2b}\ln\frac{V+b}{V} \end{align} </math>

Gibbs free energy:

<math> \begin{align} G-G^{0}=\frac{bRT}{V-b}-\frac{a}{V+b}-RT\ln\frac{V-b}{V}-\frac{a}{b}\ln\frac{V+b}{V}-RT\ln\frac{V}{V^{0}} \end{align} </math>

Specific Heat Capacity at Constant Pressure:


Specific Heat Capacity at Constant Temperature:


Other Properties

Fugacity:

<math> \begin{align} \ln\frac{f}{P}=\frac{b}{V-b}-\frac{a}{RT(V+b)}-\ln\frac{V-b}{V}-\frac{a}{bRT}\ln\frac{V+b}{V}-\ln\left(\frac{V}{V-b}-\frac{a}{RT(V+b)}\right) \end{align} </math>